Leunig Homolog , and Seuss Are Transcriptional Co - Repressors That Regulate Flower Development , Mucilage

نویسنده

  • Caren Chang
چکیده

Title of Dissertation: LEUNIG, LEUNIG HOMOLOG, AND SEUSS ARE TRANSCRIPTIONAL CO-REPRESSORS THAT REGULATE FLOWER DEVELOPMENT, MUCILAGE SECRETION, AND PATHOGEN RESISTANCE Minh Bui, Doctor of Philosophy, 2009 Directed By: Associate Professor William J. Higgins, Department of Biology Transcriptional repression is an important regulatory mechanism for development. My thesis focuses on dissecting the function of Groucho (Gro)/Transducin-Like Enhancer of split (TLE) family of transcriptional repressors in plant development. My work characterizes two Arabidopsis thaliana genes, LEUNIG (LUG), first discovered to repress transcription of the floral homeotic gene AGAMOUS (AG), and LEUNIG_HOMOLOG (LUH), a gene with the highest sequence similarity to LUG. To investigate the functional redundancy between LUG and LUH, I constructed and analyzed lug; luh double mutants, and concluded that both LUG and LUH repress AG expression in the flower, with LUG playing a more prominent role than LUH. The double mutant also revealed a previously unknown function of LUG and LUH in embryogenesis because lug-3; luh-1 double mutants are embryo lethal, while the single mutants develop normal embryos. During the course of this study, I developed a new genotyping method called Simple Allelediscriminating PCR (SAP), which is cost-effective, quick, and easy to perform. This method has greatly facilitated my research as well as others in the lab. A second part of my thesis addresses the role of LUG and LUH in other developmental processes besides flower development. My data indicate that these two genes, like their counter parts in fungi and animals, act as “global co-repressors” in various developmental and physiological processes. My thesis work revealed that both co-repressors, together with its interacting protein SEUSS (SEU), repress the Salicylic Acid (SA) pathogen defense pathway. Although lug-3, luh-1, and seu-1 mutants induced PR1 expression at higher levels than wild-type, only lug-3 and seu-1 mutants were pathogen resistant. Furthermore, LUH functions as a positive regulator in seed mucilage secretion, a process important for proper seed germination, hydration, and dispersal. I propose a possible connection between the defect in mucilage secretion and pathogen defense in luh-1 mutant plants and seeds, which places the foundation for further investigation and may uncover mucilage secretion as a major defense mechanism. My thesis has provided important insights into how transcriptional co-repressors regulate diverse developmental and physiological pathways in higher plants. LEUNIG, LEUNIG HOMOLOG, AND SEUSS ARE TRANSCRIPTIONAL COREPRESSORS THAT REGULATE FLOWER DEVELOPMENT, MUCILAGE SECRETION, AND PATHOGEN RESISTANCE

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LEUNIG and SEUSS co-repressors regulate miR172 expression in Arabidopsis flowers.

Central to the ABCE model of flower development is the antagonistic interaction between class A and class C genes. The molecular mechanisms underlying the A-C antagonism are not completely understood. In Arabidopsis thaliana, miR172 is expressed in the inner floral whorls where it downregulates the class A gene APETALA 2 (AP2). However, what controls this predominantly inner whorl-specific expr...

متن کامل

APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development.

The transcriptional repression of key regulatory genes is crucial for plant and animal development. Previously, we identified and isolated two Arabidopsis transcription co-repressors LEUNIG (LUG) and SEUSS (SEU) that function together in a putative co-repressor complex to prevent ectopic AGAMOUS (AG) transcription in flowers. Because neither LUG nor SEU possesses a recognizable DNA-binding moti...

متن کامل

LEUNIG, a putative transcriptional corepressor that regulates AGAMOUS expression during flower development.

Regulation of homeotic gene expression is critical for proper developmental patterns in both animals and plants. LEUNIG is a key regulator of the Arabidopsis floral homeotic gene AGAMOUS. Mutations in LEUNIG cause ectopic AGAMOUS mRNA expression in the outer two whorls of a flower, leading to homeotic transformations of floral organ identity as well as loss of floral organs. We isolated the LEU...

متن کامل

SEUSS and SEUSS-LIKE transcriptional adaptors regulate floral and embryonic development in Arabidopsis.

Multimeric protein complexes are required during development to regulate transcription and orchestrate cellular proliferation and differentiation. The Arabidopsis (Arabidopsis thaliana) SEUSS (SEU) gene encodes a transcriptional adaptor that shares sequence similarity with metazoan Lim domain-binding transcriptional adaptors. In Arabidopsis, SEU forms a physical complex with the LEUNIG transcri...

متن کامل

Transcriptional repression of target genes by LEUNIG and SEUSS, two interacting regulatory proteins for Arabidopsis flower development.

Transcription repression plays important roles in preventing crucial regulatory proteins from being expressed in inappropriate temporal or spatial domains. LEUNIG (LUG) and SEUSS (SEU) normally act to prevent ectopic expression of the floral homeotic gene AGAMOUS in flowers. LUG encodes a protein with sequence similarities to the yeast Tup1 corepressor. SEU encodes a plant-specific regulatory p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009